龍飛鳳舞振家聲 招牌一出棟天庭

龍飛鳳舞振家聲 招牌一出棟天庭
龍飛鳳舞振家聲 招牌一出棟天庭
龍飛鳳舞振家聲
招牌一出棟天庭

『龍飛鳳舞』指『喫夜粥練硬對拳頭』

『招牌』指『洪門』

『棟』指『棟穿』

『天庭』指『满清』

3D打印-濟出頭摩達斷線

3D打印-濟出頭摩達斷線
3D打印-濟出頭摩達斷線
3D打印-濟出頭摩達斷線
3D打印-濟出頭摩達斷線
3D打印-濟出頭摩達斷線
3D打印-濟出頭摩達斷線

3D打印機濟出頭,步進摩達衰老斷線,濟出唔匀,導至氣窿,Y軸偏移.

采用『PH2.0MM-6P』『PH2.0插針』.用熱缩管包露銅線, 收屘『热熔胶固定』排線.

B450-ITX

B450-ITX
B450-ITX
B450-ITX
B450-ITX
B450-ITX
B450-ITX
B450-ITX
B450-ITX

買雜牌『B450-ITX』配『RYZEN5-1500X』砌臺ITX,摆係老竇屋企睇片.

點知『BE200』WIFI吾認識.篮牙要更新BIOS.

SSD磁盤冇法指盤符,要装最新版Windows10-22H2.

 

Intel Wi-Fi 7 BE200

Intel Wi-Fi 7 BE200
Intel Wi-Fi 7 BE200
Intel Wi-Fi 7 BE200
Intel Wi-Fi 7 BE200
Intel Wi-Fi 7 BE200
Intel Wi-Fi 7 BE200

之前係老竇屋企砌臺ITX電腦愛蒞睇片,『BE200』新出買蒞試試, 點知係係『b450-itx』可以認藍牙,唔認WIFI.反而係『x99-itx』藍牙WIFI都認.

唯有『AX210』配『b450-itx』, 『BE200』配『x99-itx』.

下載最新Intel WiFi驅動.

https://downloadmirror.intel.com/812774/WiFi-23.20.0-Driver64-Win10-Win11.exe
https://downloadmirror.intel.com/812775/WiFi-23.20.0-Driver64-Win10-Win11.zip
https://downloadmirror.intel.com/794069/BT-23.10.0-64UWD-Win10-Win11.exe
https://downloadmirror.intel.com/794708/BT-23.10.0-64UWD-Win10-Win11.zip

 

Motorola Droid 3

Motorola Droid 3
Motorola Droid 3
Motorola Droid 3
Motorola Droid 3

睇到摩記早年出android手幾『Droid 3』,側滑鍵盤設計,绝版手機. 買蒞測試android程式.

『Droid 3』設debug模式

  1. 撳『Settings』-> 『Applications』 -> 『Development』
  2. 撳『USB debugging』

Photoshop除邊緣白邊

Photoshop除邊緣白邊
Photoshop除邊緣白邊

Photoshop係轉存256色『索引色』時,除『背影透明』圖像邊緣生產白毛.

  1. 撳『模式』->『索引色』
  2. 『邊緣調合』揀『黑色』
  3. 『混合』揀『冇』
  4. 『强制』揀『冇』
  5. 勾『透明』

X99-EATX禁CPU-C3 Report /CPU-C6 Report

X99-EATX禁CPU-C3 Report /CPU-C6 Report
X99-EATX禁CPU-C3 Report /CPU-C6 Report

登入Win10間謁會TeeDriverW8x64.sys蓝屏, 聽聞禁節能模式可修复,『CPU C3 report』『CPU C6 report』.

  1. 著機logo,撳『del』鍵登入BIOS
  2. 撳『IntelRCSetup』
  3. 撳『CPU C3 Report』揀『Disabled』
  4. 撳『CPU C6 Report』揀『Disabled』

NET Frameword 3.5(包括.NET2.0和3.0)

NET Frameword 3.5(包括.NET2.0和3.0)
NET Frameword 3.5(包括.NET2.0和3.0)
NET Frameword 3.5(包括.NET2.0和3.0)
NET Frameword 3.5(包括.NET2.0和3.0)
NET Frameword 3.5(包括.NET2.0和3.0)
NET Frameword 3.5(包括.NET2.0和3.0)
  1. 撳『Win+E』 檔案總管
  2. 撳『控制台』
  3. 撳『程式和功能』
  4. 撳『開啟或關閉Windows功能』,著『Windows功能』.
  5. 勾『NET Frameword 3.5(包括.NET2.0和0) 』,撳『确定』.
  6. 等下載後套用.

 

UTF8/BIG5/Shift-JIS/EUC-KR/GB2312判定

UTF8/BIG5/Shift-JIS/EUC-KR/GB2312判定
UTF8/BIG5/Shift-JIS/EUC-KR/GB2312判定

係電腦發展初時定義左套『ASCII碼』,得128字符,英文加數字用單字節BYTE. 後蒞各國皆自定『字符編碼』,『Shift-JIS/EUC-KR/BIG5/GB2312』皆占两字節WORD,结果係編碼重叠.所以先有亂碼.

Low 8bit Height 8bit
ASCII-128 0 ~ 0x7F N/A
BIG5漢字 0xA1 ~ 0xF9 0x40 ~ 0x7E

0xA1 ~ 0xFE

SHIFT-JIS日字 0x81~0x9f

0xe0~0xef

0x40~0x7e

0x80~0xfc

EUC-KR韓字 0xA1~0xFE 0xA1~0xFE
GB2312中字 0xA1 ~ 0xF7 0xA1 ~ 0xFE
GBK中字 0x81 ~ 0xFE 0x40 ~ 0xFE

『UTF-8』係Unicode『萬國碼』變體,首byte前缀標記字符長度.前缀0長度1, 前缀110長度2, 前缀1110長度3.以此类推.尾随byte前缀皆標記01.

『UTF-8』bin 長度
bin:0xxxxxxx 1
bin:110xxxxx 10xxxxxx 2
bin:1110xxxx 10xxxxxx 10xxxxxx 3
bin:11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 4
bin:111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 5
bin:1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 6

UTF-8判定

if ((utf8[0] & 0x80) == 0x00)

return 1;

值小於0x80的ASCII字元
if ((utf8[0] & 0xE0) == 0xC0  &&

(utf8[1] & 0xC0) == 0x80)

return 2;

2字節UTF-8字符
if ((utf8[0] & 0xF0) == 0xE0 &&

(utf8[1] & 0xC0) == 0x80 &&

(utf8[2] & 0xC0) == 0x80)

return 3;

3字節UTF-8字符
if ((utf8[0] & 0xF8) == 0xF0 &&

(utf8[1] & 0xC0) == 0x80 &&

(utf8[2] & 0xC0) == 0x80 &&

(utf8[3] & 0xC0) == 0x80)

return 4;

4字節UTF-8字符
if ((utf8[0] & 0xFC) == 0xF8 &&

(utf8[1] & 0xC0) == 0x80 &&

(utf8[2] & 0xC0) == 0x80 &&

(utf8[3] & 0xC0) == 0x80 &&

(utf8[4] & 0xC0) == 0x80)

return 5;

5字節UTF-8字符
if ((utf8[0] & 0xFE) == 0xFC &&

(utf8[1] & 0xC0) == 0x80 &&

(utf8[2] & 0xC0) == 0x80 &&

(utf8[3] & 0xC0) == 0x80 &&

(utf8[4] & 0xC0) == 0x80 &&

(utf8[5] & 0xC0) == 0x80)

return 6;

6字节UTF-8字符

值小於0x80係ASCII字符集

if ((string[0] & 0x80) == 0x00)

return 1;

BIG5漢字符集編碼范圍

if ((string[0] >= 0xA1 && string[0] <= 0xF9) &&

(string[1] >= 0x40 && string[1] <= 0x7E ||

string[1] >= 0xA1 && string[1] <= 0xFE) )

return 2;

SHIFT-JIS日字符集編碼范圍

if ((string[0] >= 0x81 && string[0] <= 0xF9 ||

string[0] >= 0xe0 && string[0] <= 0xef) &&

(string[1] >= 0x40 && string[1] <= 0x7E ||

string[1] >= 0xA1 && string[1] <= 0xFE) )

return 2;

EUC-KR韓字符集編碼范圍

if ((string[0] >= 0xA1 && string[0] <= 0xFE) &&

(string[1] >= 0xA1 && string[1] <= 0xFE))

return 2;

GB2312中字符集編碼范圍

if ((string[0] >= 0xA1 && string[0] <= 0xF7) &&

(string[1] >= 0XA1 && string[1] <= 0XFE) )

return 2;

GBK中字符集編碼范圍

if ((string[0] >= 0x81 && string[0] <= 0xFE) &&

(string[1] >= 0XA0 && string[1] <= 0XFE) )

return 2;

 

UNICODE-UTF8轉換

UNICODE-UTF8轉換
UNICODE-UTF8轉換

係電腦發展初時.定義左套『ASCII碼』,得128字符,英文加數字用單字節BYTE. 後蒞各國皆自定『字符編碼』,『BIG5/GB2312』皆占两字節WORD,结果係編碼重叠.所以先有亂碼.

UNICODE『萬國碼』,各國各自有獨立編碼段,吾重叠,同『ASCII碼』兼容.

『UNICODE』係設計之初每字符占『2 BYTE』即『USC2』字符集. 但係『2 BYTE』够支持65535字符.所以後蒞有『USC4』占『4 BYTE』.

係同壹字符串USC2同USC4會混合出現.

但係『ASCII碼』只需單字節『1 BYTE』. 所以發明左『UTF-8』以節約地方.

『UTF-8』同『UNICODE』按照下表互為轉换.

Unicode『USC2』字符集HEX 『UTF-8』bin
0x0000~0x007F 0xxxxxxx
0x0080~0x07FF 110xxxxx 10xxxxxx
0x0800~0xFFFF 1110xxxx 10xxxxxx 10xxxxxx

為左係同壹字符串『USC2』同『USC4』混合出現.係『USC4』字符『低16bit』同『高16bit』分別加前缀標記.

『低16bit』加『0xD800』,『高16bit』加『0xDC00』,再加壹區域0x10000.

前缀標記『0xD800』『0xDC00』各占6bit,各净低10bit加埋有『20bit』.够支持 『1048576』字符

USC4-低16bit前缀標記 0xD800 BIN:110110 00000 00000
USC4-高16bit前缀標記 0xDC00 BIN:110111 00000 00000

 

USC4 前缀標記 USC4=前缀標記+字符
低16bit 0xD800 BIN:110110 00000 00000 + BIN:xxxxxxxxxx
高16bit 0xDC00 BIN:110111 00000 00000 + BIN:xxxxxxxxxx

utf8 轉 usc4

首字節 value = utf8[sour] & (0xFF >> (bytes + 1));

++sour;

尾随字節 for (int i = 1; i < bytes; ++i) {

value = value << 6;

value = value | (utf8[sour] & 0x3f);// 提低6bit

++sour;

}

减壹區域 value = value – 0x10000
低16bit unicode[dest] = 0xD800 | ((value >> 10) & 0x3ff );
高16bit unicode[dest+1] = 0xDC00 | ((value) & 0x3ff);

dest = dest + 2;

utf8 轉 usc2

首字節 value = utf8[sour] & (0xFF >> (bytes + 1));

++sour;

尾随字節 for (int i = 1; i < bytes; ++i) {

value = value << 6;

value = value | (utf8[sour] & 0x3f);

++sour;

}

反轉字節 v = (value >> 24) & 0xFF;

unicode[dest] = v;

v = (value >> 16) & 0xFF;

if (v != 0) {

unicode[dest] = (unicode[dest] << 8) + v;

++dest;

}

反轉字節 v = (value >> 8) & 0xFF;

unicode[dest] = v;

v = value & 0xFF;

if (v != 0) {

unicode[dest] = (unicode[dest] << 8) + v;

++dest;

}

Usc4轉utf8

提取字符 value = (unicode[sour] – 0xD800) << 10 | (unicode[sour + 1] – 0xDC00);
加壹區域 value = value + 0x10000;

Usc2轉utf8

提取字符 value = unicode[sour];
首字節 utf8[dest] = (0xFF << (8 – bytes)) | (value >> ((bytes – 1) * 6));

++dest;

尾随字節 for (int i = 1; i < bytes; ++i) {

utf8[dest] = 0x80 | (value >> ((bytes – i – 1) * 6) & 0x3F);

++dest;

}

++sour;

『UTF-8』首byte,前缀標記字符長度. 前缀0長度1, 前缀110長度2, 前缀1110長度3. 以此类推.尾随byte前缀皆標記01.

『UTF-8』bin 長度
bin:0xxxxxxx 1
bin:110xxxxx 10xxxxxx 2
bin:1110xxxx 10xxxxxx 10xxxxxx 3
bin:11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 4
bin:111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 5
bin:1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 6

按首BIT符號,計算UTF8字符長度,返回0非UFT8字符.

『UTF-8』字符
if ((utf8[0] & 0x80) == 0x00)

return 1;

0xxxxxxx
if ((utf8[0] & 0xE0) == 0xC0  &&

(utf8[1] & 0xC0) == 0x80)

return 2;

110xxxxx 10xxxxxx
if ((utf8[0] & 0xF0) == 0xE0 &&

(utf8[1] & 0xC0) == 0x80 &&

(utf8[2] & 0xC0) == 0x80)

return 3;

1110xxxx

10xxxxxx

10xxxxxx

if ((utf8[0] & 0xF8) == 0xF0 &&

(utf8[1] & 0xC0) == 0x80 &&

(utf8[2] & 0xC0) == 0x80 &&

(utf8[3] & 0xC0) == 0x80)

return 4;

11110xxx

10xxxxxx

10xxxxxx

10xxxxxx

if ((utf8[0] & 0xFC) == 0xF8 &&

(utf8[1] & 0xC0) == 0x80 &&

(utf8[2] & 0xC0) == 0x80 &&

(utf8[3] & 0xC0) == 0x80 &&

(utf8[4] & 0xC0) == 0x80)

return 5;

111110xx

10xxxxxx

10xxxxxx

10xxxxxx

10xxxxxx

if ((utf8[0] & 0xFE) == 0xFC &&

(utf8[1] & 0xC0) == 0x80 &&

(utf8[2] & 0xC0) == 0x80 &&

(utf8[3] & 0xC0) == 0x80 &&

(utf8[4] & 0xC0) == 0x80 &&

(utf8[5] & 0xC0) == 0x80)

return 6;

1111110x

10xxxxxx

10xxxxxx

10xxxxxx

10xxxxxx

10xxxxxx

unicode轉utf8 , ASCII碼相等.

 int UnicodeToUTF8(char * utf8, const wchar_t * unicode)

{

int unicodeLength = 0;

int bytes;

int dest, sour;

DWORD value;

unicodeLength = Unicode_Length(unicode) ;

sour = dest = 0;

while (sour < unicodeLength)

{

bytes = 1;

if (unicode[sour] >= 0xD800 && unicode[sour + 1] >= 0xDC00)

bytes = 4;

else

if (unicode[sour] >= 0x00 && unicode[sour] <= 0x7F)

bytes = 1;

else

if (unicode[sour] >= 0x80 && unicode[sour] <= 0x7FF)

bytes = 2;

else

if (unicode[sour] >= 0x800 && unicode[sour] <= 0xFFFF)

bytes = 3;

else

if (((unicode[sour + 1] << 16) | unicode[sour]) >= 0x10000 &&

((unicode[sour + 1] << 16) | unicode[sour]) <= 0x1FFFFF)

bytes = 4;

else

if (((unicode[sour + 1] << 16) | unicode[sour]) >= 0x200000 &&

((unicode[sour + 1] << 16) | unicode[sour]) <= 0x3FFFFFF)

bytes = 5;

else

if (((unicode[sour + 1] << 16) | unicode[sour]) >= 0x4000000 &&

((unicode[sour + 1] << 16) | unicode[sour]) <= 0x7FFFFFFF)

bytes = 6;

else

if (((unicode[sour + 1] << 16) | unicode[sour]) >= 0x80000000)

bytes = 7;

 

if (bytes == 1)

{

utf8[dest] = unicode[sour];

++dest;

++sour;

}

else

if (unicode[sour] >= 0xD800 && unicode[sour + 1] >= 0xDC00)

{

value = (unicode[sour] – 0xD800) << 10   |  (unicode[sour + 1] – 0xDC00);

value = value + 0x10000;

utf8[dest] = (0xFF << (8 – bytes)) | (value >> ((bytes – 1) * 6));

++dest;

for (int i = 1; i < bytes; ++i) {

utf8[dest] = 0x80 | (value >> ((bytes – i – 1) * 6) & 0x3F);

++dest;

}

sour = sour + 2;

}

else

if (bytes == 2 || bytes == 3)

{

value = unicode[sour];

utf8[dest] = (0xFF << (8 – bytes)) | (value >> ((bytes – 1) * 6));

++dest;

for (int i = 1; i < bytes; ++i) {

utf8[dest] = 0x80 | (value >> ((bytes – i – 1) * 6) & 0x3F);

++dest;

}

++sour;

}

else

if (bytes >= 4)

{

value = (unicode[sour + 1] << 16) | unicode[sour];

utf8[dest] = (0xFF << (8 – bytes)) | (value >> ((bytes – 1) * 6));

++dest;

for (int i = 1; i < bytes; ++i) {

utf8[dest] = 0x80 | (value >> ((bytes – i – 1) * 6) & 0x3F);

++dest;

}

sour = sour + 2;

}

}

utf8[dest] = NULL;

return dest;

}

utf8 轉 unicode

 int UTF8ToUnicode(wchar_t * unicode, const char* utf8)

{

int utf8Length;

int sour, dest;

int bytes;

dest = sour = 0;

DWORD value;

BYTE v;

utf8Length = strlen(utf8);

while (sour < utf8Length)

{

if ((utf8[sour] & 0x80) == 0x00)

bytes = 1;

else

if ((utf8[sour] & 0xE0) == 0xC0)

bytes = 2;

else

if ((utf8[sour] & 0xF0) == 0xE0)

bytes = 3;

else

if ((utf8[sour] & 0xF8) == 0xF0)

bytes = 4;

else

if ((utf8[sour] & 0xFC) == 0xF8)

bytes = 5;

else

if ((utf8[sour] & 0xFE) == 0xFC)

bytes = 6;

else

bytes = 7;

if (bytes == 1)

{

unicode[dest] = utf8[sour];

++dest;

++sour;

}

else

if (bytes == 2 || bytes == 3)

{

value = utf8[sour] & (0xFF >> (bytes + 1));

++sour;

for (int i = 1; i < bytes; ++i) {

value = value << 6;

value = value | (utf8[sour] & 0x3f);

++sour;

}

 

v = (value >> 24) & 0xFF;

unicode[dest] = v;

v = (value >> 16) & 0xFF;

if (v != 0) {

unicode[dest] = (unicode[dest] << 8) + v;

++dest;

}

 

v = (value >> 8) & 0xFF;

unicode[dest] = v;

v = value & 0xFF;

if (v != 0) {

unicode[dest] = (unicode[dest] << 8) + v;

++dest;

}

}

else

if (bytes >= 4 )

{

value = utf8[sour] & (0xFF >> (bytes + 1));

++sour;

for (int i = 1; i < bytes; ++i) {

value = value << 6;

value = value | (utf8[sour] & 0x3f);

++sour;

}

value = value – 0x10000;

unicode[dest] = 0xD800 | ((value >> 10) & 0x3ff );

unicode[dest+1] = 0xDC00 | ((value) & 0x3ff);

dest = dest + 2;

}

}

 

unicode[dest] = NULL;

return dest;

}